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ASYMPTOTIC FORM OF THE STRESS INTENSITY COEFFICIENTS IN 
QUASISTATIC TEMPERATURE PROBLEMS FOR A DOMAIN WITH A CUT* 

V.A. KOZLQV,V.G. MAE'YA and V.Z. PARTON 

Plane quasistatic thermoelasticity problems are investigated for domains 
of arbitrary shape with a cut inthe case of an instataneous temperature 
change onthe boundary. The asymptotic form of the stresses is investigated 
in the neighbourhood of a crack tip. 

Certain quasistatic temperatue problems were solved earlier in /l-5/ 
(see /6/ also) for the development of cracks on parts of whose surfaces a 
constant temperature occurs at the initial instant and is maintained. 
Expressions are obtained for the stress intensity coefficients at the 
crack tip. 

Quasistationary thermoelasticity problems are investigated below for 
domains with cut in a more general asymptotic sense. A plane domain with 
a cut whose boundary is instantaneously cooled or heated is examined in 
Sects.l-3. Since the shape of the domain contour can be arbitrary, it is 
impossible to speak of the explicit solution of the thermoelasticity boundary 
value problem. Nevertheless, an expression is successfully found for the 
principal terms of the asymptotic form of the stress intensity coefficients 
at the most dangerous initial times (from the viewpoint of crack propagation). 
In particular, the asymptotic form of the fracture time is determined as a 
function of the temperature jump at the crack tip. 

Note that the principal term of the tensile stress intensity coefficient 
is independent of the contour shape, and agrees with the intensity 
coefficient of the same problem for a plane with a cut. 

Analogous results are obtained in Sec.4 for the problem of an 
instantaneous change in the endface temperature of a thin plate from whose 
side surfaces heat is transferred to the external medium, where the stress 
intensity coefficients found are explicitly expressed in terms of those in 
the absence of heat transfer. This enables an asymptotic analysis to be 
made of the stresses near a crack tip at the initial times. 

The results obtained in this paper emerge fromthe asymptotic solution 
of the heat conduction equations as t-0 for a domain witha cut and the 
method proposed in /7/ for calculating the stress intensity coefficients. 

1. Formulation of the boundary value problems. To be specific we will examine 

plane strain. As is well-known, the plane state of stress with zero heat transfer from the 
external medium is realized on replacing the Lam; constant ?. by A, = 2141 (i, -I- 2p), and 1 

by 1.1 = (1 - 2~) p (1 - 0). where 1' = 2pr*r (1 -!- v)/(1 - 2~); p is the shear modulus, cr is the 
coefficient of linear expansion, and v is Poisson's ratio, in which connection, only the 
appropriate constants vary inthe asymptotic formulas indicated later. 

Let e!. be a plane domain with a smooth boundary r0 (see the Figure). There is a 
rectilinear cut of length 1 in Q, that connects the origin 0~ Q, with the point A E To. 
We denote the upper and lower edges of the cut by l_ and 1_. We understand r to be the 

contour r0 supplemented with two drawn segments 1. and Q to be the domain bounded by r 
Let R' be the closure of the domain $2 in the sense of its internal metric. To simplify the 
discussion, we will consider the angle formed by the contour r0 and the segment 1 to be a 
right angle, and the contour I-, itself to be rectilinear near the point A. 

The temperature T is determined from the solution of the boundary value problem 
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aTat- AT=0 on Q x (0, 00) 

T = 0 on r x (0, w), T It+, = To 
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(1.1) 

The thermal diffusivity is thereby assumed to be equal to one, which obviously does not 
restrict the generality. 

The displacement vector u generated by this temperature field is found from the solution 
of the following boundary value problem (a,% are the normal and tangent to r): 

~Au + (h + p)grad div u = 
ygrad T on Q 

(1.2) 

h div u -+ 2p au,,!& = yT on r 

p (ah/h + at+‘an) = 0 on r 

Asymptotic form of the temperature as U’ ;&cd The solutions of three model problems are 
to describe the singularities in the 

temperature T on r as t--t +O, related to the 

presence of corner points 0, A. 

20. Selfsimilar solutions for a plane with a cut, quadrant, and half-plane. Let L be 
the solution of the homogeneous heat conduction equation in the domain ((I, t): r> 0, I e I c n, 
t> 0). where s = (x1, z?) and (r, 6) are the polar coordinates of the point J. The function 

L is subjected to boundary and initial conditions: L l+fn = 0, L (izO = 1. We shall seek L 
in the form L = l(p. tl). where p = rz(4t). and we obtain the following boundary value problem 
for 1 : 

Let uj (8) = n-'~ sin 1 lj (0 _C n) (j = 1. 2. . ..) be eigenfunctions of the operator cP.'dEP in 
the segment [--.',.rl with Dirichlet conditions on its ends. Keeping in mind the Fourier series 
in the system of functions {uj) for the ones, it is natural to represent I in the form of the 
series 

~(p.e)=~~~~,('))~~~(i T f)e (2.2) 
j=O 

Satisfying the boundary value problem, we obtain 

where 0 is the degenerate hypergeometric function /6/. The asymptotic formula 

hence follows. 
It is more convenient tc find the asymptotic form of the function I for large p directly 

from the boundary value problem (2.1). Let % be a smooth function on the positive half-axis 
that equals one in 10.',)and zero in [I ?% Y)). We shall seek the asymptotic form of the function 
1 in the form 

1 (:I. 8) = 1 - z (T) g (p Ein? T) - q (p. ej. T = 2 - 10 1 (2.4) 

Substituting (2.4) into (2.1) and integrating, we obtain that g (2) = erfc lfzC 
The function q is the solution of a boundary value problem analogous to (2.1), where 

0 (e-b@) is on the right side of the equation in place of zero (b is a certain positive 
number). It can be shown by expanding q(p. 0) in a trigonometric series in sir$/,k(e + X) or 
by using energy estimates that q decreases as p + 30 more rapidly than any power of p (the 
lengthy proof of this fact is omitted). 

The selfsimilar solution 
r>O, o<e<nq, i.e., 

31 (r?(&). 0) is constructed analogously for the quadrant Q = {z: 

8) 

the solution of the homogeneous heat conduction equation in Q ‘i (0. 
that satisfies the conditions JIJ~=0..,.2 = 0, M llCO = 1. The explicit form of the function 

M is not used. It is useful just to keep in mind the asymptotic formulas 

M (p, e) = cp sin 28 + 0 (pa), p -* 0 

Al (p. e) = 1 - z (T) erfc (p"'sin T) + 0 (pep), p - s 
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where y. is the same shearing function as before, 'c = min (8, x/2 - 8)and N is any positive 
number. 

The solution G(x,t) = erf (r,Qt’/*)) of the homogeneous heat conduction equation in the 
domain ((5, t): t> 0, xl > 0) that satisfies the conditions G I+=,, = 0, G It+, = 1 is later also 
required. 

20 . Local estimate. To estimate the residuals occuring on replacing T by the selfsimilar 
solutions constructed above, we prove the following assertion about the local estimate for 
the solutions of the heat conduction equation. 

Lemma. Let c', I'be domains in the plane {r).oC v and R a function from c (IO, toI; W2’(R)Iq 
P([O, t,]; W2-1(0)) that satisfies the initial boundary value problem 

(tl at - A) R = j on {(.r, t): 0 < 1 < 1,. s E 0 ;T 1') (2.5) 

R It=0 = 0 on R j- 1', R = 0 on {(I. 1): 0 < t < i,, .7 f r 5 1') 

Then there exists a postive constant c dependent on c'. V such that 

Proof. Let FE Ci(R'r be a non-negative even function such that F(OI = O,O< F”<c. We 

also introduce the non-negative function 11 E CoJi (I',7 Qc) that equals one in (I 3 R. Multiplying 
(2.5) by OF’(R) and integrating by parts, we find 

therefore 

Let F = (R? - SIP ? - b”. 6 > il for 1 Q p :.: 2 When p>? we set 

F(R;=jR\p for R j < T: FIR = I-‘p (p - Ii T”-‘/ R I 2 - 

,I (p - 3) T’-‘, R ~ - ?‘(p - l,(f) -- 2’ 7, for IRI>T 

Passing tc the limit as 0 -il. I- x,we obtain the estimate (2.6). 
We note that for I= 0 the sol.;aon of probblerr (2.5) allows of the following estimate 

on IO. t,l < (Q ,F- 1') (it is obtai ned from: (2.6) by induction over .VJ : 

dsymctotic 

(I< r-3:**. 10 1 ; 3). 
fcrr of t;re function T. Let b be a small positive number (‘6 (0) = {:I,: 
By virtue of the estimate (2.7) the following inequality holds: 

;: T (. . 1)- TOILi’. i) ,JP\~o’~,i -< csT”fS, l<p<= 

n-=0, I., ., 

. 
where L is the function definec in Sec. lc. The following inequality, used later, is therefore 
obtained: 

kr-‘.: T (.r, t) - ToL(r. t) j dr <cl” (2.“) 

Let (r.0) be polar coordinates with centre the point A and C*(A)= (I: U< r< 6. ti < 16 I< 
n 2). 

Again applying the estimate (2.7) to R = T - T,.II. we find that 

,' T(. 1)- To')f(.* 1) !rL,il-g'.4.,i -, PiTof (2.9) 

Here M is the selfsimilar solution determined in Sec. lo for the first quadrant, that is 
continued in a clear manner into the fourth quadrant. 

Let P now be any point of the contour r such that 

1 p - _4 / > 6, /f' - 01> 6;L‘b (p) = {ZE 0: / r - P 1 <a). 

We introduce the coordinates (n. s) in [‘b (p) where n is the distance to r, /sI is the 
distance from the nearest point to I on the contour r to P, and the sign of s is selected 
in conformity with the positive direction of traversing the contour. The Laplace operator in 

(71% s) coordinates has the form 
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(k is the curvature). Consequently 

(+A)ert (--+)=--$$ev(-S) 

In view of the maximum principle, for the heat-conduction equation 

T-_oert * 
i )I 

<TO 
* 

Moreover, the boundary and initial values of the function T, T,erf(n/2t':) agree in u6 (P); 

And finally, let Q be 
the boundary r is greater 
point Q. 

By virtue of estimate 

consequently, on the basis-of inequality (2.6) we obtain 

any point of the domain I; such that the distance between it and 
than 6. Let c,(Q)be a circle of radius 6 with centre the 

(2.10) 

(2.11) 

3. Asymptotic form of the stress intensity coefficients as t--r i0. 1". 
Asymptotic form of displacements near the crack tip. We ccnsider the boundary value problem 
(1.2) in which the time t enters as a parameter. If t> 0. then the quantities grad T and 
T have weak singularities at the crack tip, and consequently, the asymptotic form of the 
solution of this problem is 

(u,, Q) (r. 0) = cl (CW 8. --li~i 8) T cr (sin 8, co5 e) L 
(4p)-l 1’7% (I&q” (0) -. Kl]r(‘“) (6)) 2 0 (r). r - 

q"' (El) = ((2x - 1) CO' e 1 -co: 36 2. -(2x 7 1) s,n e 2 

1):’ 6'7-3:' 363. :;-l)w O* 

- 

sill 30 2) 

q(il) fe) = ((2~ - ‘I,! _ ‘lli _ 2.. c 2 - 3 COE 35 2) 

Here ~,.a~ are components of the displacement vector inapolar coordinate system, c,. c2 
are certain functions of time, fil. Kll are stress intensity coefficients dependent on I. X = 
3 - i\ for plane strain and y. = (ii - Y)'(Y -L 1) for the plane state of stress. 

Following /7/, we describe the procedure for calculating the coefficients h'l and Xl,. 
Let ~1~' and z!IIj denote the displacement fields satisfying the homogeneous Lam6 equations 
and the boundary conditions u (z(“).n = 0 on r. bounded outside any neighbourhood of the 
point o and having the asymptotic form 

{r,','. ,,(i') (r. 8) = 12 (f - X) (zfr)':I-'@! (6) + 0 (if. I‘--+0 

J@“'(0) = (("z - 1) coi 30 2 - 3 co: e 2. --(2x - 

Ij sill 38 2 - 3 sill 8 2) 

*cl]) (0) = ((2x - 1) -ill 3tr 2 - >ill 8 2, (7x - 1) co, 38 :! - c*h 8 2) 

Since T = 0 on r b, (U. s) and u, (L') = o,,~ ft.) = U on r. then according to /7/ for t>O 

K,(t)=y~g'ad T(.r.t)z:j~(x)dr, j=I,Ii (3.1) 

Integrating by parts in (3.1), we obtain 

g,(f)=-~~~T(z,1)i,,(iidr=-_g(T(r,t)-_To)Ir,(r)d3 (3.2) 

ltj(z)= div z(j)(s) 

The followingequationwas used here 

s n P dr = 0 
r 
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which follows from the Betti formula for the vectors z(j), I. We note that h, = h,(o) + 0 (+A), 
where 

hr,xr = 

20 . Asymptotic form of the stress intensity coefficienrs. Theorem 1. The asymptotic 
formulas 

(3.3) 

hold, where m = af (1 + V) (1 - v)-l, y = 2par(1 -j- v)(1 - 2~)~' for plane strain and m = CCT (1 f 1'). 
y = 2par (1 + v) (1 - v)-* for the plane state of stress with zero heat transfer from the 
external medium. 

The integrals in (3.3) are understood in the principal value sense: 

The limit on the right exists because 

Proof. We fix a sufficiently small number 6 > 0. Let r, = {t e Q: dist (2. r, <6), I', (0; 
and C,(A) are neighbourhoods of the points 0 and A defined in Sec. 1.2, TOE= t‘,\iL-biO~ ii C,(Ai!. 
We set 

1,; f,t) = - 
1. 
" (I. - 1 j hjdz, I,, (0 = - 1 (M - l)lz,dr (3.4) 

L-b(G) L.b;.4i 

where n is the distance tc the boundary. Let 

Since h,= o(--':, then by using the estimates (2.8)-(2.11), we obtain that R!(t)= O(t). 

Therefore, to obtain (3.31 it is sufficient to investigate the functions I,j. I,>, I,j for 

small t and we will therefore do this. 
We evaluate tie integrals 

We have 

I “,Cf =- 1 ,L--l:i,y'ds 
1 bi08 

13.5) 

The relationship l,(r) - I = ff (r-11 as Z-CC was used here. Integrating by parts in the 

last integral in (3.5) and applying the formula /8/ 

_.& [C-"z'-" Q, i(I,(‘; 5)]1 ie-unJa-+zC-~-f@(o --1,CZ) 

we find 
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Since L is an even and hIjo) is an odd function of 8, then Jo,=0 

We use the notation 

Hj = h, - h1"', I,, = 1,) - J,j = - u~o~(L--I)Hjdi 

We represent J,j as the sum of two integrals, the first of which is extended over the 

set {z: O<r< 8". 18 1 <?I) and the second over the set {x: t"'<r<& lel< ~1. By virtue of the 

estimate jHj/<cr -‘;r and the boundedness of the function L the first integral equals 0 (1' '). 

We replace the function L- 1 in the second integral by its asymptotic form 

-_X(T)erjc cr +)I 0((G)-"), -& 

and the function Hj by the sum H,* (4 i 0 (tr-‘.“). where Xi' = lim Hj as e-fX. Then 

Furthermore, since 

(the integral is understoodinthe principal value sense). Therefore 

The asymptotic form of the integrals I,,, I,j is found similarly, even somewhat more 

simply, and has the form 

from which (3.3) follows. 

Remark. According to the theorem proved, the sum of the squares of the intensity coef- 
ficients Xc= R,*+ K,,' grows as con+t.!'; for small t. From the representation of the temperature 
as an eigenfunction series of the Laplace operator with homogeneous Dirichlet conditions on 
r, it follows that x2(1; -consi.~~p(-?i.~f: for large t, where ii, is the first eigenvalue of the 
Dirichlet problem for the Laplace operator. Since E is a continuous function of time (see 
(3.2)), at a certain time it reaches a maximum. If this maximum is sufficiently small, the 
crack is stable. 

According to Theorem 1, for T,>O the coefficient K 1 is positive for small t,i.e., 
tensile stresses originate at the crack tip during cooling of the contour r . When T,<@ 
the stresses will be compressive. In particular, the asymptotic form of the time t* of the 
beginning of crack propagation 

is determined from (3.3). 
Here To is the jump in temperature at the crack tip, and Klc is the critical value of 

the tensile stress intensity coefficient. 

4. Taking account of heat transfer. Let S-2 be the same domain as before, and 
T(r. t)the solution of the equation 

AT-$T-+O (4.1) 



This equation describes the mean temperature distribution, over the thickness, in a 
thin plate 9 x I-h.hl on whose side surfaces heat transfer from the surrounding zero 
temperature medium occurs according to Newton's law, a2 = k/h, where k is the coefficient of 
relative thermal efficiency. 

As in Sect.l.1, we assume that the plate had the temperature T, at the initial instant, 
and then its endfaces instantaneously acquired the temperature T,, i.e., 

T IbrJ = To* T\r=T1 for t>o (4.2) 

The displacements originating in the plate satisfy the boundary value problem 

&US(u -+h,)graddiv U=y, grad T on Q 

h,divU+2p$$=y,T on I' 

(4.3) 

(7,, = 2?4.4 (h + 2p)-l, ye = 2par (1 + v) (1 - 4-l) 

Let F be the solution of the boundary value problem 

iv:at - AF = 0. F jt=* = f,Ffr=O 

It is confirmed directly that the function 

T(2,t)=exp(-ua2tl(To-_~)F(z,t) + T1(1-u2i exp(-02~)F(.r~)d~) 
D 

satisfies problem (4.1), (4.2). Let QJ (t), QI, (t) denote the stress intensity coefficients 
generated by the temperature field F in a plate with zero heat transfer fromthe external 
medium. Also let Kr (t),Kll(t) be stress intensity coefficients in the initial problem. It 
follows from (3.2) and (4.4) that (j = I, II) 

Kj(f)=exp(-o't)(T0-- T,)Q;(t)- o’Tli:erp(--‘T)Qj(~)di (4.5) 

Using Theorem 1, we 

The residue RI and 

i 
hence obtain the equality 

& (r) = Kp (1) i RI (r). \>here 

the intensity coefficient ,Kr, allow of the estimate 

1 RI (t) I + j KU (t) / d c ( / TO ( i 1 T, 1 )min {u-l, t"*) 

where c is independent of To. T,, u. t. 
By virtue of (4.5) and i3.3), for a21<i the coefficients El. Ku have the sameasyrnptotic 

value as in the absence of heat transfer (see (3.3)). The stresses near the crack tip are 
thereby compressive for T,> To and tensile for T, < To for small 0%. 

When oat>tl, t< 1 we have 

Kir(I)--j5~(l " r)alo-'T1 

and, in particular, the stresses wil- 1 be tensile (compressive) for T, < 0 (T, >'O). 
Let us study the nature oI 6 the stresses in the intermediate zone of variation of 021 by 

limiting ourselves to the principal term of +-he asymptotic form X,'O'(fi. Its behaviour depends 
on the sign of the numbers T,. T,, T, - 7,. 

If T, 7 0, T,< TX or T,( T, <@ then the function K,(O)(~) varies monotonically between zero 
and A,@) (00) = -V&I (1 -Y) aTu-lT,. 

If T,<O, T,> 0. T,> T,. then li,(O' (IV 7 0 and at the time t,= @(To - T,)/(4T,) takes the 

greatest value 
K:a,(t 

l 
) = +r (+)q (l-V)S”~‘TIS (A!$.Q+) 

When O< T,< T, the function li: (I) is positive in the interval (0, to), 2, = ol*R ((To - TdT,). 
where y= ~c.1) is the single positiveroot of the equation s (1, I/) = 0. For t>to it is negative 

and varies between zero and X~"'(m). The greatest value of the function @)(fi iS Ajo' (k!. 

Finally, for T,< T,<O the quantity 6, *(*) (f) is negative in the interval ‘(0, Q, changes sign 

at the time to 9 and increases monotonically to A(" (WI. 
The following asymptotic formulas are confirmed directly: 
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rgn Tt 

-c 
+ 
- 
4 

- 

Ire 

- 

:I, T, 

+ 
- 
- 

+ 

- 

I 

- 

rn CT*-T,) 

- 
+ 
L 

-I- 

Rind of stress 

Compressive 

Tensile 

Tensile 

Tensile for 
t< to. 

Compressive for 
t> to 

Compressive for 
t<to, 

Tensil;,? 

- 
Stability criterion 

The crack is stable 

I(';$.) <Krc 

R(;$e)<I1C 

K (;'(!.) <Krc 

The time I, is an increasing function of the ratio Tu'T, such that 

5 To - T, 
tll -7 3-a - Tl , TJ;'-I+0 

TO 
t* - j-2 102 7 , , TOT;* - + c-5 

Deductions from the investigation made on the function Ii, '"(I) are collected in the table 

WI, is the critical valueofthe tensile stress intensity coefficient). 

1. 

2. 

3. 

4. 

5. 

6. 
7. 

8. 
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